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Chemometric Analysis of Multisensor Arrays

W. Patrick Carey, Kenneth R. Beebe,
Eugenio Sanchez, Paul Geladi, Bruce R. Kowalski.

Laboratory for Chemometrics
Department of Chemistry, BG- 10
University of Washington
Seattle, WA 98195

ABSTRACT
A discussion of multivariate calibration techniques and their possible

application to sensor array data is reviewed. The progression from
multiple linear regression, and principal components regression, to partial
least squares can be described by the analysis of their respective
algorithms and the data analysis problems each of them solve. Additional
analysis models are introduced to detect underlying background problems
for sensor arrays and the ability to quantitate analytes directly by rank
annihilation factor analysis when two dimensional data is obtained.

With the arrival of new and novel types of chemical sensors, the

chemist will have to meet a new challenge in data acquisition and analysis.

The abundant information content that was once only common in areas of

chemistry such as spectroscopy, where hundreds of wavelengths are

scanned, is now available for microsensors. The progress of chemical

sensors from the pH electrode to the CHEMFET has been remarkable. With

microlithography, hundreds of solid state sensors can be combined on a

single chip to form a data gathering array equivalent to a spectrometer. The

next problem facing the user of sensor arrays is that of data analysis. The

complexities of multisensor array responses or outputs have to be sorted

into useful information since solid state technology does not eliminate such

fundamental problems as matrix effects, interferences, and backgrounds.

The variety of techniques used In multivariate calibration and quantitation
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and how they might apply to the chemical sensor array will be discussed in

this paper.

Linear Regression.

The single-component, single-sensor model used in most analyses is a

linear relationship between the response of a sensor and the concentration

of an analyte:

r=b0 +blc+e (1)

This model requires that a calibration step be performed to find the

sensitivity of the sensor, b, (slope of the regression line), and the r-axis

intercept, bo . The residual error E is the portion of the response not

described by the model. The second step in the analysis Is then performed

by measuring the responses of unknown samples and then estimating their

concentrations. The assumptions made using least squares regression are

that the calibration plot is linear and the sensor is fully specific for the

analyte of interest (this also assumes that b. is zero). The most commonly

encountered problems using this method are matrix effects and the presence

of a background response. Matrix effects are due to a change in the

sensitivity coefficient b1 between calibration and quantitation. This type

of effect Is most readily treated by using the method of standard additions.

The addition of a background or interference correction cannot be directly

Included In this model, especially if the interferent is unknown. This

suggests the use of sensor arrays which are necessary for the analysis of

mixtures. The advantages include reduction in analysis time and the

allowance of the use of non-specific sensors.

The data obtained from an array of sensors does not differ from that

obtained from more classical analytical instrumentation. For this reason,

" the types of data analysis used for sensor arrays does not differ from those

". .
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commonly used In, for example, emission spectroscopy. In emission

spectroscopy, the spectrum or an analyte Is defined as the emission

Intensities or the analyte at a predetermined number of wavelengths. A

more unique or distinguishing spectrum Is one In which more wavelengths

are employed. An important characteristic that determines the amount of

information contained In a spectrum is the degree of orthogonality or

independence of the wavelengths. This becomes clear if one considers the

hypothetical case of a spectrum defined by two wavelengths. If one adds a

third wavelength whose intensity Is always the sum of the first two, no

new Information Is obtained by Its Inclusion. For an array of sensors, the
.spectrum" or signature of an analyte is the composite of responses or each

sensor to the analyte. It is not a true spectrum in that the ordering or the

sensors, and therefore the shape of the spectrum, is arbitrary. In true

spectra, either time or a progression or wavelengths serves to define their

shapes, although adjacent wavelengths are often highly correlated. Such a

correlation arises since adjacent wavelengths are nearly equal in energy.

When this occurs, many wavelengths must be used to obtain information

that could be contained in a smaller, more independent array of sensors. To

improve the uniqueness of an array signature, more sensors can be used.
Therefore, one powerful aspect of arrays is that sensors whose responses

are independent can be chosen. The mechanisms which determine the

responses of the Individual sensors can be chosen to be nearly orthogonal.

Multiple Linear Regression.

One of the most widespread uses of chemometrics is in the estimation of a

model used for calibration. This is often done for a multicomponent mixture

where the concentration of p -analytes in a mixture is sought. Perhaps the

simplest method to understand is the method of multiple linear regression
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(MLR) (1). With an array or sensors, a typical problem would be to determine

the concentrations of p analytes in n samples where an array or m sensors

Is employed, Figure 1. To solve this problem, two assumptions must first

be made. First, it Is assumed that the sensors respond linearly. This states

that doubling the concentration of an analyte will double that analytes

response from each sensor. Second, it is assumed that the response of a

sensor to two or more analytes is additive. For example, if a sensor has a
response of two and three units to one molar solutions of analytes A and B,

respectively, then its response to a mixture of one molar A and one molar B

will be five units. With these assumptions, the problem can be solved using

MLR.

The response matrix X is a n x m matrix whose rows are the n

samples and columns are the responses of the m sensors:

XK = Y (2)

Y is a matrix of unknown concentrations with n samples as rows ana p

analytes as columns, and K is the calibration matrix of regression

coefficients. To solve the problem, one must first use a calibration set (Xo

and Yo are the matrices of calibration responses and concentrations) where

the analyte concentrations for the n samples are known. Knowing Xo and Yo,

K can be determined by linear algebra. If the number of samples does not

equal the number of sensors, then Xo is not a square matrix, and its inverse

cannot be determined. Thus both sides of the equation must be multiplied by

XoT before the inverse is found.

K =(XoT Xo) -I XoT Yo (3)

[ ..!.--:. .i:.:-::::................i:-x 
-. *:
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Once this K Is determined, the Initial Xmix obtained from the unknown

mixtures can be used to find the concentrations of the mixtures.

Ymix =Xmix K (4)

Note that this K matrix does not ccntain information about the

sensitivities of the sensors to the analytes. Since this information is often

important, the matrix of sensitivities K can be derived as follows:

K+ =KT (KKT) 1 (5)

This equation calculates the best least square fit describing the data

points for each analyte and each sensor using the criteria. It is an adequate

method in many cases, but in some instances its application is either not

appropriate or impossible. In the under-determined case where the number

of analytes (p) is greater than the number of sensors (m), MLR gives an

infinite number of solutions to the problem and is therefore useless. When p

equals m, there is one unique solution, and when p is less than m, more

information is available and therefore, a better statistical fit is achieved.

*Another common problem is collinearity, which occurs when the Xo

matrix does not have full rank, i.e. some number z of the columns in Xo are

nearly linear combinations of the remaining m-z columns. When this occurs,

the inversion procedure becomes sensitive to errors when calculating K, and

small errors in an observed sensor response value in X will result in large

errors in the corresponding concentration estimates in Y.

Background Identification.

..........- d-
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It is assumed in the MLR calibration step that the calibration mixture

contains the same or greater number or analytes as in the unknown mixture.

The unknown presence of a background, an uncallbrated analyte, if not

eliminated, will cause erroneous results in the measurement of a mixture.

A method proposed by Osten and Kowalski for background Identification can

be used to test whether further calibration or sample purification is

necessary (2). This technique uses a new maxtrix X where the first N row:

of X are identical to the K calibration matrix (actually each row contains

the responses of each sensor to a pure analyte) and the N+ 1 st row is the

measured responses of a mixture of analytes (e.g. a real unknown sample).

The method Involves the normalization of X by rows (the sum of each

row element equals one) and then mean-centering the data by subtraction of

the mean response of each sensor for the N analytes from each entry for

that sensor in the matrix. The second moment matrix X'XIN is calculated

using only the first N rows of the normalized, mean-centered X matrix.

Diagonalization of this moment matrix gives rise to two matrices, one being

N-I eigenvalues, E, and the other being N-1 eigenvectors, V.

Now the scaled and centered mixture response vector, XN+ I (the N+ I

row of X), can be rotated by the eigenvector matrix V.

SN+1 - XN+1V (6)

The mixture response vector can be estimated by the eigenvectors and the

above scores vector, SN+ l, by

X"N+1 = VSN+ I (7)

The difference between the actual and predicted response vectors results in

the residuals vector h.

L h = XN+1 - X"N+1 (8)

"p

.
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The sum of the squares of each element Of XN+ I and X"N+1 are calculated and

compared. If the residual vector h contains more than 1 x 10-3% of the

original variance in the mixture response, then a background component is

,. present. The major problem with sensor array data is that background

detection is possible but not correctable without knowing what the

components of the background are in order to include them in the calibration

step.

Principal Component Regression.

An alternative to the linear calibration problem, principal component

regression (PCR), couples factor analysis or principal component analysis

(PCA) with multi-linear regression (3). This method is not as sensitive to

the collinearity problem and aids in the determination of the best solution

in the under-determined case. PCA is a method in which more descriptive

variables (which correspond to columns) are calculated. These new

variables, which are called principal components or eigenvectors, are linear

combinations of the original columns. They are more descriptive because

they are chosen to describe the maximum amount of variance in a data

matrix. To illustrate this, the entries in each column can be viewed as

defining a corresponding vector's orientation in m-dimensional space. The

first eigenvector is the vector whose direction describes the maximum

amount of variance out of all of the possible directions. The second

eigenvector is by definition orthogonal to the first and is the second most

descriptive direction. Since the eigenvectors are in m-space, the maximum

number of eigenvectors equals the number of columns or m. Often times r

eigenvectors or columns, where r<p, can be used to describe all or nearly all

of the variance in a data matrix. When this is true, the m x p matrix can be

reduced to a m x r matrix where the new columns in the reduced matrix are

.................................



8

independent and are the coordinates or the samples in the new coordinate

system defined by the eigenvectors (as opposed to the original columns).

The first step in PCR is to perform PCA on X and calculate a new smaller

matrix S (n x r) using the first r eigenvectors (r<m ). This step is identical

to that used in equation 6. A similar procedure called cross-validatlon (4)

can also be used to optimally choose a number of components when

reduction of dimensionality is necessary.

The next step is to perform MLR of 5 onto Y.

SK = Y (9)

Because the columns of 5 are orthogonal, there is no collinearity problem,

and the number of elgenvectors used can be chosen to accommodate the

number of rows or samples present. Of course the best approach is to

always be over-determined (m>p), but where this is not possible, the best

result is that in which the maximum amount of information is used to derive

the solution.

When using an array of sensors, PCA can have another important use.

Performing PCA on the X matrix will yield new columns that are linear

combinations of the original columns as stated before. The loadings or

contributions of the original columns to the new columns can be examined to

determine the information content of the original columns. 5ince these

columns correspond to the responses of individual sensors, an analyst can

use the results of PCA to determine whether or not a sensor is useful (5).

Informative sensors will load heavily into the first r eigenvectors where r

is chosen such that the first r eigenvectors describe a predetermined

amount of the variance in the data set. In this way many sensors can be

tested simultaneously, and the sensors that contribute the most to the first

r eigenvectors are selected to form the array. The best approach is to

... . • .. . ... -, . . .. ... , .. . ... .-. ....- .- . -. ,. . ... ...... .. ..... ,...........-.... .... :....-...., -.
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select the major contributor to the first elgenvector as the first sensor, the

major contributor to the second eigenvector as the second sensor, and so on.

One would not chose all of the sensors that loaded into the first

elgenvector, even though it is the most descriptive, because columns that

load into the same elgenvectors are usually highly correlated and therefore

would cause collinearity problems. The successive eigenvectors are

orthogonal; therefore the major contributors to the successive eigenvectors

are also more nearly orthogonal.

Partial Least 5auares

One of the latest regression procedures to be developed is that of partial

least squares (PL5). PLS was first described in the middle of the 1960's by

Herman Wold (6). It was used moderately in the fields of econometrics,

sociology and psychology during the seventies (7). The first use in

chemistry was reported by H. Wold, B. Gerlach and B. Kowalski in the late

seventies (. Vol. 2, chapt.9). Since then, the groups of Svante Wold at Ume5

University (Ume, Sweden) and Harald Martens at the Norwegian Food

Research Institute (As, Norway) have been refining and specializing the

method for chemical applications. References 8, 9 and 10 give a

description of that work.

The PL5 method of regression Is based on the properties of multiple

linear regression (MLR) and of principal component analysis (PCA). It is

considered the best of both methods. The important aspects of the PLS

method are:

-Model building

-Prediction (Figure 2)

-Parsimony

-':.' -. . . ," - - ,.. . . .- ' . .•. . . . . . . ." " " _ i ,; P I .:: 7
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One Important fleld of use or PLS Is In multivariate calibration In

analytical chemistry. Applications in this field can easily be extended to

the calibration of sensors. Up to now, almost all chemical applications have

used the 2-block PLS model, where the response and concentration matrices,

Figure 1, are considered blocks of data. One advantage of PLS is the use of

more than one response block to be regressed with the concentration block.

This aspect of PLS has not been applied in a chemical experiment as of this

time.

The 2-block PLS uses the same data structure as MLR, except the

regression algorithm decomposes both blocks into sums of simpler

matrices. Principal Component Regression (PCR) Is the case where the X-

block is decomposed and the regression is modeled from the X-block scores

against the Y-block, equation 9. In PLS, rotated factors called latent

variables are used for the regression part instead of principal components.

The variables are rotated for optimizing the correlation between the

scores of both blocks as in Canonical Correlation. Although it is

Impossible to describe completely how PL5 works in this paper, interested

readers are referred to a tutorial on PL5 written by Geladi and Kowalski

(11). Table I gives a comparison between MLR, PCR and PL5.

Table I.
A comparison of MLR, PCR and PLS

MLR PCR PLS

I. Osamples > Osensors no requirement no requirement

2. works best with accepts collinear accepts collinear
orthogonal sensors sensors sensors

3. matrix inversion matrix inversion no matrix inversion
is difficult is easy

i. -.. ,. .i- .-- .- i-- .- . . ... .. .' .. . -. . . .. .. "-.- -'..' -. .. "-.". '.", :".? , :.



4. no data on matrix matrix condition matrix condition
condition data available data available

5. block data is not factor analysis part factor analysis part
analyzed allows allows

classification and classification and
pattern recognition pattern recognition

6. sensitive to noise sensitive to noise separates noise
from relevant
information

7. multiple dependent multiple dependent makes meaningful
variables are treated variables are treated linear
independently independently combinations in

dependent block

PL5 as a regression method can be used no matter how many

variables (sensors) there are in the X and Y blocks and collinearity problems

can be avoided. PLS and PCR, by their nature give data on the condition of

the X-block matrix. For MLR this would require an extra calculation step

that is almost never carried out by "black-box" MLR users. One of the main

advantages of PL5 over PCR and its applicability to sensor arrays is that it

SI  can separate noise from useful information.

Rank Ar ;il"ItFactor Analysis.

The analytical chemist is frequently confronted with the problem of

i analyzing complex mixtures in which he is only interested in the

concentration of a few components. It would be convenient if quantitative

Information could be obtained for the analytes of interest without worrying.

I about the rest of the sample components. Second order bilinear sensors, i.e.
sensors that give a two dimensional data matrix of the form Mij=-kJ3kXikYjk,

;:.:.
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are specially suited for this purpose, and the technique for quantitation is

Known as rank annihilation('Z..L). 50 tar this method has been applied to

excitatlon-emlsslon fluorescence(12-14) and to LC/UV (15) with excellent

results. One problem in the calculation has been that an iterative solution

requiring many matrix diagonalizations was necessary. Lorber (16) has

reported a noniterative solution, rank annihilation factor analysis (RAFA),

presenting the problem as a generalized elgenvalue problem in which a

direct solution is found by using the singular value decomposition.

In practice, Nk, the bilinear spectrum of a pure compound k, is

known, and M, the billnear spectrum of a mixture sample where the k

compound is present, is measured. This data matrix M can be expressed as a

linear combination of the n pure components bilinear spectra Nk:

M = Xk f3kNk where Nk = Xk YT ; (Nij)k = Xik Yjk (10)

The Xk are column vectors with information in one order, e.g. excitation

spectra, and the YkT are row vectors with information in the second order,

e.g. emission spectra. If Nk is defined as unitary concentration pure

component bilinear spectra, then Plk is the concentration of the kuh

compound.

If the data matrix M has rank p, subtracting from M the right amount

of N, i.e. 13kNk, the resultant matrix will have rank p-1, or in a equivalent
77

manner

det(M - I3kNk) 0 (11)

* To solve this equation for f3k the generalized eigenvalue problem is applied.

The matrices M and Nk are normally rectangular, so a transformation is

necessary.

Equation (I I) can be rewritten as:
det(Nk -NkM) ;hk = !/13k ( 12a)
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Nk Z = Zk Z (12b)

Next the singular value decomposition of the M matrix is obtained.

M=US VT (13)

where

M V =S U (14)
MTU = S V (15)
MTMV = 52V eigen-equations in V space. (16)

MMTU = S2U eigen-equations in U space. (17)

The s.cond step is to determine the number of significant

eigenvalues p (equations 16-17) using abstract factor analysis (Q5).

To transform equation 12 to the normal eigenvalue equation, a new matrix M

which is obtained from U,V and S is generated by taking the first p columns,

M =US VT (18)

substituting Nj for M in equation 12b.

Nk Z = )'ktl z (19)

Nk Z = XkU 5 YT Z (20)

The eigenvector z is replaced by z = V S-Iz ', where z' = S VT z; therefore

Nk IV .z= ; kU Z' (21)

Left multiplying by UT results in

(W1T Nk V) VZ' (UTkU) Z' A k Z'

(UT Nk 1 15-) Z' = Nk Z' (22)

This is the normal eigenvalue equation, with matrix (UT Nkya -) being

square. Because the rank of Nk is one, there will be p-I zero solutions for

the eigenvalues. Therefore, the only non-zero solution will be equal to the

trace of matrix (Y-T Nk ._-'). By calculating the trace of the above matrix,

the concentration of that component (inverse of x) is solved directly. Other

analytes can then be analyzed sequentially.
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It has been shown that a wide variety of data analysis techniques can

be applied to sensor array data. 5ince each method offers different

advantages, It Is essential that the proper technique used should maximize

Information received while minimizing error at the cost of programming

complexity. A direct result of the above comparison of multivariate

techniques shows that in moving toward sensor arrays, problems such as

Interferences, if known, can be calibrated into a model for quantitation.

Futhermore, the more complex the response data of a sensor array, timeI- responses for example, the more useful Information can be extracted as

seen in RAFA. A direct result of this type of data analysis could provide a

sensor array on a single silicon chip which could directly measure 10 to 20

blood constituents intravenously in minutes. A number of studies are

underway in our laboratory aimed at extending the calibration mathematics

described above and applying them to a variety of sensor arrays for process

*- . monitoring and control.
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the estimation for test data. X and Y are calibration data,

X is the unknown response data, and Y is the unknown
concentration date

4.-



DL/413/83/01
GEN/413-2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

No. No.
Copies Cooies

Office of Naval Research 2 Dr. David Young
Attn: Code 413 Code 334
800 N. Quincy Street NORDA
Arlington, Virginia 22217 NSTL, Mississippi 39529

Dr. Bernard Douda 1 Naval Weapons Center
Naval Weapons Support Center Attn: Dr. A. B. Amster
Code 5042 Chemistry Division
Crane, Indiana 47522 China Lake, California 93555

Commander, Naval Air Systems 1 Scientific Advisor
Command Commandant of the Marine Corps

Attn: Code 310C (H. Rosenwasser) Code RD-i
Washington, D.C. 20360 Washington, D.C. 20380

Naval Civil Engineering Laboratory 1 U.S. Army Research Office
Attn: Dr. R. W. Drisko Attn: CRD-AA-IP
Port Hueneme, California 93401 P.O. Box 12211

Research Triangle Park, NC 27709

Defense Technical Information Center 12 Mr. John Boyle
Building 5, Cameron Station Materials Branch
Alexandria, Virginia 22314 Naval Ship Engineering Center

Philadelphia, Pennsylvania 19112

DTNSRDC 1 Naval Ocean Systems Center
Attn: Dr. G. Bosmajian Attn: Dr. S. Yamamoto
Applied Chemistry Division Marine Sciences Division
Annapolis, Maryland 21401 San Diego, California 91232

Dr. William Tolles
Superintendent I
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375

,., .. -. .- .. . . -' . - . : ' "-.'-.' . .. - '.- ... ."~ j.- ." - -" " ', ". - *, . -.' ' " * . "- "."-* - .- w ,



i
.

DL/413/83/01
051B/413-2

ABSTRACTS DISTRIBUTION LIST, 0516

Dr. R. A. Osteryoung Dr. G. M. Hieftje
Department of Chemistry Department of Chemistry
State University of New York Indiana University
Buffalo, New York 14214 Bloomington, Indiana 47401

Dr. J. Osteryoung Dr. Christie G. Enke
Department of Chemistry Department of Chemistry
State University of New York Michigan State University
Buffalo, New York 14214 East Lansing, Michigan 48824

Walter G. Cox, Code 3632
Naval Underwater Systems Center
Building 148
Newport, Rhode Island 02840

Dr. H. Chernoff Professor Isiah M. Warner
Department of Mathematics Department of Chemistry
Massachusetts Institute of Technology Emory University
Cambridge, Massachusetts 02139 Atlanta, Georgia 30322

Dr. A. Zirino Dr. Kent Eisentraut
Naval Undersea Center Air Force Materials Laboratory
San Diego, California 92132 Wright-Patterson AFB, Ohio 45433

Dr. George H. Morrison Dr. Adolph'B. Amster
Department of Chemistry Chemistry Division
Cornell University Naval Weapons Center
Ithaca, New York 14853 China Lake, California 93555

Dr. Alan Bewick Dr. B. E. Douda
Department of Chemistry Chemical Sciences Branch
Southampton University Code 50 C
Southampton, Hampshire Naval Weapons Support Center
ENGLAND S09 5NH Crane, Indiana 47322

Dr. M. B. Denton Dr. John Eyler
Department of Chemistry Department of Chemistry
University of Arizona University of Florida
Tucson, Arizona 85721 Gainesville, Florida 32611

Dr. S. P. Perone
Lawrence Livermore National

Laboratory L-370
P.O. Box 808
Livermore, California 94550

p2 : :, .,, Z <. .,,-. , ,.. .. .. . ....



* 01/413/83/01
* 051B/413-2

ABSTRACTS DISTRIBUTION LIST, 0518

Professor J. Janata Dr. Denton Elliott
Department of Bioengineering AFOSR/NC

*University of Utah Bolling AFB
*Salt Lake City, Utah 84112 Washington, D.C. 20362

*Dr. J. DeCorpo Dr. B. E. Spielvogel
NAVSEA Inorganic and Analytical Branch

-Code 05R14 P.O. Box 12211
Washington, D.C. 20362 Research Triangle Park, NC 27709

Dr. Charles Anderson Ms. Ann De Witt
Analytical Chemistry Division Material Science Department
Athens Environmental Laboratory 160 Fieldcrest Avenue
College Station Road Raritan Center
Athens, Georgia 30613 Edison, New Jersey 08818

Dr. Ron Flemming Dr. A. Harvey
8 108 Reactor Code 6110

*National Bureau of Standards Naval Research Laboratory
Washington, D.C. 20234 Washington, D.C. 20375

UDr. Frank Herr Mr. S. M. Hurley
Office of Naval Research Naval Facilities Engineering Command

*Code 422CB Code 032P
800 N. Quincy Street 200 Stovall Street

-Arlington, Virginia 22217 Alexandria, Virginia 22331

Professor E. Keating Ms. W. Parkhurst
Department of Mechanical Engineering Naval Surface Weapons Center

-. U.S. Naval Academy Code R33
Annapolis, Maryland 21401 Silver Spring, Maryland 20910

Dr. M. H. Miller Dr. M. Robertson
1133 Hampton Road Electrochemical Power Sources Division
Route 4 Code 305
U.S. Naval Academy Naval Weapons Support Center
Annapolis, Maryland 21401 Crane, Indiana 47522

Dr. Clifford Spiegelman Dr. Andrew T. Zander P1204
National Bureau of Standards Perkin-Elmer Corporation
Room A337 Bldg. 101 901 Ethan Allen Highway/MS905
Washington, D.C. 20234 Ridgefield, Connecticut 06877



DL/413/83/01
0518/413-2

ABSTRACTS DISTRIBUTION LIST, 051B

Dr. Marvin Wilkerson Dr. H. Wohltjen
* Naval Weapons Support Center Naval Research Laboratory

Code 30511 Code 6170
Crane, Indiana 47522 Washington, D.C. 20375

Dr. J. Wyatt Dr. John Hoffsommer
Naval Research Laboratory Naval Surface Weapons Center

* Code 6110 Building 30 Room 208
- Washington, D.C. 20375 Silver Spring, Maryland 20910

Dr. J. MacDonald Dr. Robert W. Shaw
Code 6110 U.S. Army Research Office
Naval Research Laboratory Box 12211
Washington, D.C. 20375 Research Triangle Park, NC 27709

,I

I

E'
.......................................................................



FILMED

6-85

DTIC


